
ПРИМЕР

тестового задания по атомной физике раздел «Основы квантовой механики»

- 1. Квадрат орбитального момента импульса частицы может быть равен (ℓ квантовое число орбитального момента импульса):
- 2. Частица находится в одномерной прямоугольной потенциальной яме бесконечной глубины $V(x) = \begin{cases} \infty, |x| \geq a/2, \\ 0, |x| < a/2. \end{cases}$ в первом возбужденном состоянии. В каких пространственных

точках плотность вероятности обнаружить частицу достигает максимального значения?

- 3. Вероятность P проникнуть сквозь высокий и широкий (P << 1) потенциальный барьер U(x) ($U(x) \to 0$ при $x \to \pm \infty$, E кинетическая энергия, x_I , x_2 классические точки поворота, где $U(x_{I/2})=E$) равна:
- 4. Тонкое расщепление уровня $n\ell$ атома водорода равно:
- 5. Энергии стационарных состояний одномерного линейного квантового гармонического осциллятора с частотой ω (n=0,1,2,3,...) равны:
- 6. Волновая функция состояния некоторой квантовой системы, как функция азимутального угла, имеет вид (B нормировочная константа) $\psi(\phi) = B \cos^2 \phi$. Какие значения z–проекции момента количества движения L_z могут быть измерены в этом состоянии?
- 7. В бесконечно глубокой прямоугольной одномерной потенциальной яме шириной a (начало координат в середине ямы) волновая функция в начальный момент времени имеет вид $\psi(x,t=0)=\left(\phi_1(x)+\phi_3(x)\right)/\sqrt{2}$. Как изменяется во времени среднее значение координаты частицы $<\!x(t)\!>$? $\phi_n(x)$ собственные функции, E_n соответствующие собственные значения оператора Гамильтона, $n=1,2,3,\ldots$ (A некоторая константа).
- 8. На рис. представлена радиальная волновая функция некоторого стационарного состояния электрона в атоме водорода. Определить квантовые числа n и ℓ .

- 9. Энергия электрона в стационарном состоянии в ионе He^+ равна E = -Ry. Перечислите все возможные значения орбитального квантового числа ℓ ?
- 10. Кратность вырождения нижнего возбужденного стационарного состояния в трехмерном изотропном гармоническом осцилляторе $V = m\omega^2(x^2 + y^2 + z^2)/2$ бесспиновой частицы равна

ПРИМЕР

тестового задания по атомной физике раздел «Атомная спекроскопия»

- 1. Спектр поглощения невозбужденного атома натрия (Z = 11) это переходы:
- 2. Полный спин полностью заполненной оболочки может быть раве
- 3. Составьте конфигурацию почти заполненной подоболочки f-электронов (заполненную подоболочку с одной дыркой вынутым электроном). Найдите термы такой подоболочки.
- 4. Найти основное состояние атома, электронная конфигурация незаполненной оболочки которого $4f^66s^2$
- 5. Сколько компонент имеет тонкая структура нижнего возбужденного терма атома натрия (Z=11).
- 6. Определить число компонент сверхтонкой структуры основного состояния однократно заряженного положительного иона ${}^{13}_{6}C$. Спин ядра I=1/2.
- 7. Сколько значений принимает квантовое число J полного момента импульса, если заданы квантовые числа L и S терма ^{2S+I}L
- 8. Правило отбора $\Delta J=0;\pm 1$, кроме $J=0 \leftrightarrow J'=0$, определяет возможность перехода между:
- 9. Сколько спектральных линий будет наблюдаться при переходах $^1D_2 \rightarrow {}^1P_1$ и $^3D_2 \rightarrow {}^3P_1$ в слабом магнитном поле
- 10. На сколько компонент расщепится пучок атомов азота (Z=7), находящихся в основном состоянии, в эксперименте Штерна и Герлаха в случае слабого и сильного магнитных полей. В сильном поле *LS* взаимодействием пренебречь.