Фазовые переходы в ансамбле кубитов, взаимодействующих с электромагнитным полем в резонансной полости

Выполнил: Ионцев М. А.

Научный руководитель: Мухин С.И.

Научный консультант: Фистуль М.В.

В фокусе исследования:

Изучение равновесных свойств системы	Изучение неравновесных свойств системы
Определены:	Изучение:
	-резонансных частот, на которых
- новая фаза ЭП	наблюдается подавление и
	увеличение коэффициента
 род фазового перехода 	прохождения ЭП;
	- вывод дисперсионных
- критическая температура	соотношений для ЭП;
Выработка способа	Исследование солитонных
обнаружения новой фазы	решений в нелинейном
электромагнитного поля (ЭП)	режиме.

Научная новизна:

- Исследованы осцилляции между когерентными состояниями фотонного поля с разной поляризацией и обнаружен эффект резонансного дублета;
- Получены в аналитическом виде коэффициент прохождения ЭП для линейных и нелинейных режимов взаимодействия с ДУС в неравновесном состоянии;
- Обнаружены темные и серые виды оптических солитонов в системе кубитов, взаимодействующих с ЭП.

Структура доклада:

- Описание системы
- Описание равновесных характеристик
- Описание двойного резонанса
- Описание дисперсионных соотношений
- Определение коэффициента прохождения

Описание системы

$$\begin{cases} I_{n+1,i} - I_{n,i} = I, \\ I = I_c \sin\varphi_n + C_J \frac{d^2\varphi_n}{dt^2} \\ I_{n+1,i} - I_{n,i} = C_0 \frac{dV_{n,i}}{dt} \end{cases}$$

$$\mathcal{L}_{ph} = \frac{m}{2} \left(\dot{Q}^2 - \omega_0^2 Q^2 \right)$$

$$\mathcal{V}_{n,i} \delta(i,n) \sim \mu_i$$

$$\mathcal{L}_J = \sum_i \left(\frac{E_{Ji}}{2\omega_p^2} (\dot{\varphi}_i + \mu_i)^2 - E_{Ji} (1 - \cos \varphi_i) \right)$$

$$L_{int} = Q \sum_{i} 2\omega_0 E_{Ji} \, \dot{\varphi}_i.$$

Эффективное действие

$$Z = \int DQD\{\varphi_i\} \exp\left(-S(Q,\varphi_i)\right)$$
$$S_{eff}(Q,\varphi_i) = S_{TLS} + S_{ph}$$
$$S_{TLS} = -T \ln Z_{TLS} = -T \sum_{i=1}^{N} \ln\left(2 \exp\left(\frac{E_{J_i}}{T}\right) \cosh\left(\frac{\sqrt{Q^2 \gamma^2 + 4E_{J_i}^2}}{2T}\right)\right)$$

$$S_{eff}(Q) = \frac{m\omega_0^2}{2}Q^2 - T\left(\sum_{i=1}^{N} \frac{E_{j_i}}{T} + \sum_{i=1}^{N} \ln\left[2\cosh\left\{\frac{\sqrt{Q^2\gamma^2 + 4E_{j_i}^2}}{2T}\right\}\right]\right)$$

$$\frac{\partial S_{eff}(Q)}{\partial Q} = 0$$
$$\frac{m\omega_0^2 Q}{T} = \frac{\partial}{\partial Q} \sum_{i=1}^N \ln\left[\cosh\left\{\frac{\sqrt{Q^2 \gamma^2 + 4E_{Ji}^2}}{2T}\right\}\right]$$

Эффективное действие

Равновесные свойства

$$m\omega_0^2 = \frac{N\gamma^3}{2\sqrt{Q^2\gamma^2 + 4E_J^2}} \tanh\left\{\frac{\sqrt{Q^2\gamma^2 + 4E_J^2}}{2T}\right\}$$

$$T_c = \frac{E_j}{\operatorname{acrtanh}\left(\frac{4\omega_0^2 E_j}{N\gamma^3}\right)}$$

$$Q_{max} = \frac{1}{\gamma} \sqrt{\left(\frac{N\gamma^3}{2\omega_0^2 E_J}\right)^2 - 4E_J^2}$$

 $T_c \sim N$

 $\sqrt{2\omega_0 E_J} = \gamma$

Выводы

- Степень когерентности при фазовом переходе 2-го рода такая же как и при фазовом переходе в упорядоченное состояние ферромагнетика, поскольку $T_c \sim N$.
- Параметром порядка является амплитуда фотонного поля, которая показывает, что переход в низкотемпературную фазу – второго рода.

Принципиальная схема для обнаружения двойного резонанса

Описание двойного резонанса

Описание двойного резонанса

Зависимость коэффициента прохождения от частоты. При низких температурах (красная линия) виден двойной

резонанс.

Вывод

Низкотемпературная фаза фотонного поля проявляется в виде резонансных дублетов на частотной зависимости коэффициента прохождения электромагнитных волн, распространяющихся в передающей линии слабо связанной с фотонным полем.

Высокотемпературная фаза (некогерентное состояние) фотонного поля показывает одиночное резонансное подавление коэффициента прохождения. Физической причиной таких резонансных дублетов являются квантовые колебания Раби между двумя когерентными состояниями фотонов разных поляризаций.

Описание дисперсионных соотношений

$$\ddot{Q} - v^2 Q'' - \theta \sum_n \delta(x + \ln) \int dt_1 K(t - t_1) Q(x, t_1) = 0.$$

$$K(t-t_1) = \int d\omega \frac{E_J - \omega}{\frac{1}{\tau^2} + \gamma^2 Q^2 + (E_J - \omega)^2} \cos(\omega(t-t_1))$$

Исследованные случаи:

$Lk \ll 1,$ кубиты в точке $K(t-t_1) \sim const$	$Lk \ll 1$ $K(t - t_1) \sim Q^2$
$Lk \gg 1$	$Lk \gg 1$
кубиты	
разнесены	$K(t-t_1) \sim Q^2$
$K(t-t_1) \sim const$	

$Lk=1, Lk \gg 1$ коротковолновый предел $K(t-t_1) \sim const$

Lk=3

 $\cos(kl) = \frac{u(\omega)}{v\omega} \sin\left(\frac{\omega l}{v}\right) + \cos\left(\frac{\omega l}{v}\right),$ где $u = -\theta_{lc}K(\omega) = -\theta_{lc}\frac{E_J - \omega}{\frac{1}{\tau^2} + (E_J - \omega)^2}$ Lk=1

Lk = 10

 $\omega_0 E_J \frac{L_0 N}{4L_J} = \theta_{lc}$

16

Lk=20

$$K(t - t_{1}) \sim Q^{2}$$

$$iQ' \pm \frac{k_{2}}{2}\ddot{Q} + k_{nl}Q|Q|^{2} = 0 \qquad Q = Q(x, t, \omega)$$

$$k_{2} = -\frac{\theta_{nl}}{\omega} \frac{(E_{J} - \omega)\left((E_{J} - \omega)^{2} - \frac{1^{2}}{\tau^{2}}\right)}{\left((E_{J} - \omega)^{2} + \frac{1^{2}}{\tau^{2}}\right)^{3}} \qquad k_{nl} = -\frac{\theta_{nl}(E_{J} - \omega)}{\omega\left((E_{J} - \omega)^{2} + \frac{1}{\tau^{2}}\right)^{2}} \qquad \theta_{nl} = \omega_{0}E_{J}\frac{L_{0}N}{4L_{J}}$$

$$k_{2}$$

$$k_{nl} \sim \frac{1}{\frac{\omega}{E_{J}}}$$

Решения можно искать для двух различных случаев, а именно: с нормальной дисперсией $k_2 > 0$, и аномальной $k_2 < 0$.

Аномальная дисперсия

 $iQ' + \frac{|k_2|}{2}\ddot{Q} + k_{nl}Q|Q|^2 = 0$ $L_d = \frac{T_0^2}{k_2}$ - длина, на которой необходимо учитывать линейные эффекты эволюции солитона; $L_{nl} = \frac{1}{k_{nl}}$ - длина, на которой необходимо учитывать нелинейные эффекты; T_0 – ширина солитона; $\tau = \frac{t}{T_0}, \chi = \frac{x}{L_d}; \mathcal{N}^2 = \frac{L_d}{L_{nl}}$ – порядок солитона, R – путь, пройденный солитоном

Первый случай

Когда
$$\mathcal{N}^2 \ll 1, R \approx L_d, R \ll L_{nl}$$

 $Q(\chi, \tau) = \sqrt{\frac{1}{1-i\chi}} \exp\left(-\frac{\tau^2}{2T_0^2(1-i\chi)}\right).$

Этот солитон сохраняет неизменной свою форму в пространстве в процессе распространения, но его ширина во времени увеличивается из-за дисперсии

Зависимость интенсивности солитона $I = |Q|^2$ от *t* и *x*

Второй случай

 $R > L_d, R > L_{nl}$ Решение будет стабильным только, если $L_l \approx L_{nl}$. $\mathcal{N}^2 = 1$:

 $Q(\chi, \tau) = \operatorname{sech}(\tau) e^{\frac{\iota \chi}{2}}.$ Этот вид содитона назы

Этот вид солитона называется оптическим, так как не изменяет свою форму в процессе распространения.

$$\mathcal{N}^{2} = 2:$$

$$Q(\chi, \tau) = \frac{4(\cosh(3\tau) + 3e^{4i\chi}\cosh(\tau))e^{\frac{i\chi}{2}}}{\cosh(4\tau) + 4\cosh(2\tau) + 3\cos(4\chi)}$$

Этот солитон изменяет свою форму периодически с периодом: $\chi = \frac{\pi}{2}$.

Зависимость интенсивности солитона $I = |Q|^2$ от *t* и *x*

Зависимость интенсивности солитона $I = |Q|^2$ от *t* и *x*

Нормальная дисперсия

$$iQ' - \frac{|k_2|}{2}\ddot{Q} + k_{nl}Q|Q|^2 = 0 \qquad \qquad \frac{1}{2}\frac{\partial^2 Q}{\partial\tau^2} - i\frac{\partial Q}{\partial\chi} - \mathcal{N}^2 Q|Q|^2 = 0$$

Первый случай Когда $\mathcal{N}^2 \ll 1, R \approx L_d, R \ll L_{nl}$ и краевая форма солитона гауссова $Q(0, \tau) = \exp\left(-\frac{\tau^2}{2T_0^2}\right)$, то

решение имеет вид:

$$Q(\chi,\tau) = \sqrt{\frac{1}{1+i\chi}} \exp\left(-\frac{\tau^2}{2T_0^2(1+i\chi)}\right)$$

Зависимость интенсивности солитона $I = |Q|^2$ от *t* и *x*

Второй случай

 $R > L_d, R > L_{nl}, \mathcal{N}^2 = 1$ темный солитон первого порядка:

 $Q(\chi, \tau) = \tanh(\tau)\exp(i\chi)$

темные солитоны высших порядков

 $Q(\chi,\tau) = \tanh(\mathcal{N}\tau)\exp(i\chi\mathcal{N}^2)$

нестабильны в процессе распространения.

Зависимость интенсивности солитона $I = |Q|^2$ от *t* и *x*

Нормальная дисперсия

$$R > L_d, R > L_{nl}, Q^2 > 1$$

 $Q(\chi,\tau) = \exp(i\alpha\chi) v(\tau) \exp(ig(\tau))$ $v = \sqrt{1 - B^2 \operatorname{sech}^2(\mathcal{N}\tau)}$ $g = \beta B^2 \left(\tau - \frac{B \operatorname{atanh}\left(B \operatorname{tanh}\frac{(\mathcal{N}\tau)}{\sqrt{1 - B^2}}\right)}{\mathcal{N}\sqrt{1 - B^2}}\right)$ $\begin{cases} B^2 = \frac{3\mathcal{N}^2}{2\alpha + \mathcal{N}}; \\ c = \frac{2\alpha - \mathcal{N}}{12}; \\ \beta = 2 \frac{\left(\frac{2\alpha}{\mathcal{N}^2} + 1\right)^2 (\alpha - \mathcal{N}^2)}{27}; \\ v_0 = \frac{1}{B}. \end{cases}$

Зависимость интенсивности солитона $I = |Q|^2$ от τ для разных солитонов B=1(темный, красная линия), $B=0.5 \ u \ 0.3$ (серые)

 $\mathbf{28}$

Выводы

- Резонансное взаимодействие кубитов с электромагнитной волной приводит к появлению солитонных решений: в случае с аномальной дисперсией в системе наблюдаются солитоны, сохраняющие неизменной свою форму в пространстве в процессе распространения, а также оптические солитоны как с постоянной формой, так и периодически изменяющие ее.
- В случае с нормальной дисперсией также наблюдаются как обычные постоянные гауссообразные солитоны, так и оптические: темные (при которых прозрачность системы становится равной нулю) и серые (частично «запирающие» прохождение).

θ=0,01 (синий), θ=0,001 (красный)

$$Lk \ll 1, K(t - t_1) \sim Q^2, \text{ один кубит}$$
• D= |d|² =
$$\frac{P_0}{\left(1 + \theta \frac{E_J^4 (2E_J - \omega)^2 + \frac{1}{\tau^2}}{\omega_f^2 ((2E_J - \omega)^2 + \gamma^2 |d|^2 + \frac{1}{\tau^2})^2}\right)}$$

θ = 0,09 (синий), *θ* = 0,15 (лиловый), *θ* = 0,35 (красный)

40

P, arb. units

20

60

80

0.0

Science and Tecl

$Lk \gg 1, K(t - t_1) \sim const,$ цепочка кубитов

Выводы

- В линейном режиме для одиночного кубита обнаружено сильное подавление коэффициента прохождения электромагнитной волны. В случае сильного взаимодействия с решеткой кубитов найдена область параметров, где наблюдается резонансное прохождение электромагнитной волны и резкое увеличение коэффициента прохождения.
- В сильно нелинейном режиме больших амплитуд электромагнитного поля взаимодействие кубитов с электромагнитным полем сильно подавляется, и коэффициент прохождения электромагнитной волны восстанавливается как в случае одного кубита, так и цепочки кубитов.

БЛАГОДАРЮ ЗА ВНИМАНИЕ

Ионцев Михаил

