Атомная физика

Лекция 11

проф. Попов Александр Михайлович

Многоэлектронные атомы

Одночастичные состояния и атомные оболочки

Электронное состояние	n,ℓ,m_{ℓ},m_{ℓ}	n_s He n	Не может быть повторяющихся наборов квантовых чисел			
гл. кв. число	1	2	3	4		
оболочки	K	L	M	N		
подоболочки	<i>1s</i>	2s, 2p	<i>3s, 3p, 3d</i>	4s, 4p, 4d, 4f		
число мест	2	2, 6	2, 6, 10	2, 6, 10, 14		

Атомная оболочка (слой) - совокупность электронов с одинаковым значением главного квантового числа. Число мест $2n^2$

Атомная подоболочка - совокупность электронов в атоме с одинаковыми значениями главного и орбитального квантовых чисел. Число мест $2(2\ell+1)$

Эквивалентные электроны — электроны, находящиеся в одной и той же подоболочке

Электронная конфигурация — распределение по оболочкам и подоболочкам $n\ell^k$

Многоэлектронные атомы

Сложение моментов количества движения невзаимодействующих частиц

$$\psi(1,2) = \psi_{\ell,m_1}(1)\psi_{\ell_2m_2}(2) \equiv \left|\ell_1,m_1\right\rangle \cdot \left|\ell_2,m_2\right\rangle \qquad \text{Всего } (2\ell_1+1)(2\ell_2+1) \text{ состояний }$$
 Суммарный момент $\hat{L} = \hat{\ell}_1 + \hat{\ell}_2$ $\hat{L}_z = \hat{\ell}_{z1} + \hat{\ell}_{z2}$ Кроме того $\left[\hat{L}^2,\hat{\ell}_i^2\right] = 0$ $\left[\hat{\ell}_z^1,\hat{\ell}_{z2}\right] = 0$ $\left[\hat{\ell}_i^2,\hat{\ell}_j\right] = 0$ $i,j=1,2$ Кроме того $\left[\hat{L}^2,\hat{\ell}_i^2\right] = 0$ $\left[\hat{L}^2,\hat{\ell}_z\right] \neq 0$ Два набора базисных функций $\left|\ell_1,m_1\right\rangle \cdot \left|\ell_2,m_2\right\rangle \cdot \left|\ell_1,\ell_2,L,M_L\right\rangle$ $\hat{L}_z|\ell_1,m_1\rangle \cdot \left|\ell_2,m_2\right\rangle = \hat{\ell}_{1z}|\ell_1,m_1\rangle + \hat{\ell}_{2z}|\ell_2,m_2\rangle = \hbar(m_1+m_2)|\ell_1,m_1\rangle \cdot \left|\ell_2,m_2\rangle$ $\hat{L}_z|\ell_1,\ell_2,L,M_L\rangle = \hbar M_L|\ell_1,\ell_2,L,M_L\rangle$ $M_L = \ell_1 + \ell_2$ $M_L =$

Правило сложения справедливо для моментов любой природы

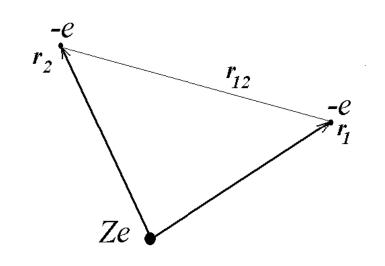
Сложение моментов количества движения. Примеры

- 1) pd конфигурация двух электронов. Возможные значения суммарного орбитального момента?
- Определить возможные значения полного спинового момента двух электронов.
- 3) Электрон в атоме находится в состоянии с орбитальным моментом, равным ℓ. Найти возможные квантовые числа полного механического момента электрона.

Сложение трех механических моментов

Конфигурация *pdf*

Атом гелия



гамильтониан
$$\hat{H}=\hat{H}_1+\hat{H}_2+\hat{V}_{12}$$

$$\hat{H}_{1} = \hat{T}_{1} + \hat{V}_{1} = -\frac{\hbar^{2}}{2m} \nabla_{1}^{2} - \frac{Ze^{2}}{r_{1}} \qquad \hat{H}_{2} = \hat{T}_{2} + \hat{V}_{2} = -\frac{\hbar^{2}}{2m} \nabla_{2}^{2} - \frac{Ze^{2}}{r_{2}}$$

$$\hat{H}\psi(\vec{r}_{1}, \vec{r}_{2}) = E\psi(\vec{r}_{1}, \vec{r}_{2})$$

0 – приближение ТВ

$$\left[\hat{H}_1(\vec{r}_1) + \hat{H}_2(\vec{r}_2) \right] \psi(\vec{r}_1, \vec{r}_2) = E^{(0)} \psi(\vec{r}_1, \vec{r}_2) \qquad \psi(\vec{r}_1, \vec{r}_2) = \psi_1(\vec{r}_1) \psi_2(\vec{r}_2) \qquad \hat{H}_i \psi_i(\vec{r}_1) = E_i \psi_i(\vec{r}_1) \qquad i = 1, 2$$

$$E^{(0)} = E_1 + E_2 = -Z^2 Ry \left(\frac{1}{n_1^2} + \frac{1}{n_2^2} \right)$$

Энергия основного состояния $E^{(0)} = -2Z^2Ry$

Симметризованные функции

$$\psi_{S(A)}(\vec{r}_1, \vec{r}_2) = \frac{1}{\sqrt{2}} (\psi_1(\vec{r}_1)\psi_2(\vec{r}_2) \pm \psi_1(\vec{r}_2)\psi_2(\vec{r}_1))$$

$$\Psi(\xi_1, \xi_2) = \psi_S(\vec{r}_1, \vec{r}_2) \chi_A(\sigma_1, \sigma_2)$$

$$\Psi(\xi_1,\xi_2) = \psi(\vec{r}_1,\vec{r}_2)\chi(\sigma_1,\sigma_2)$$

$$\Psi(\xi_1, \xi_2) = \psi_A(\vec{r}_1, \vec{r}_2) \chi_S(\sigma_1, \sigma_2)$$

Атом гелия II

$$\Psi(\xi_1, \xi_2) = \psi_S(\vec{r}_1, \vec{r}_2) \chi_A(\sigma_1, \sigma_2)$$

$$\Psi(\xi_1, \xi_2) = \psi_A(\vec{r}_1, \vec{r}_2) \chi_S(\sigma_1, \sigma_2)$$

Оператор спина нигде не стоит в гамильтониане, но пространственные части волновых функций зависят от спина и описывают совершенно различные распределения электронной плотности в атоме. Учет межэлектронного взаимодействия приведет к тому, энергия стационарных состояний в одной и той же конфигурации также будет зависеть от спинового состояния электронов

Спиновые функции двухэлектронной системы

$$\uparrow\uparrow$$
, $\uparrow\downarrow$, $\downarrow\uparrow$, $\downarrow\downarrow$

$$|\uparrow\uparrow\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}_{1} \begin{pmatrix} 1\\0 \end{pmatrix}_{2}$$

$$|\uparrow\downarrow\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}_{1} \begin{pmatrix} 0\\1 \end{pmatrix}_{2}$$

$$|\downarrow\uparrow\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}_{1} \begin{pmatrix} 1\\0 \end{pmatrix}_{2}$$

$$|\downarrow\uparrow\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}_{1} \begin{pmatrix} 1\\0 \end{pmatrix}_{2}$$

 $\left|\downarrow\downarrow\right\rangle = \begin{pmatrix} 0\\1 \end{pmatrix} \begin{pmatrix} 0\\1 \end{pmatrix}$

$$\chi_{S}(\sigma_{1}, \sigma_{2}) = |\uparrow\uparrow\rangle, \quad S = 1, \quad M_{S} = 1,$$

$$\chi_{S}(\sigma_{1}, \sigma_{2}) = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle), \quad S = 1, \quad M_{S} = 0,$$

$$\chi_{S}(\sigma_{1}, \sigma_{2}) = |\downarrow\downarrow\rangle, \quad S = 1, \quad M_{S} = -1,$$

$$\chi_{A}(\sigma_{1}, \sigma_{2}) = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle), \quad S = 0, \quad M_{S} = 0,$$

2S + 1 – мультиплетность (возможны синглеты и триплеты)

Атом гелия III

Основное состояние. Конфигурация $1s^2$ $n_1 = n_2 = 1$ $\ell_1 = \ell_2 = 0$

$$n_1 = n_2 = 1$$
 $\ell_1 = \ell_2 = 0$

Возможна только симметричная относительно перестановки пространственная функция

$$\psi(\vec{r}_1, \vec{r}_2) = \psi_{1s}(\vec{r}_1)\psi_{1s}(\vec{r}_2)$$

 $\psi(\vec{r}_1,\vec{r}_2) = \psi_{1s}(\vec{r}_1)\psi_{1s}(\vec{r}_2)$ - спиновая антисимметрична (синглет)

Возбужденные состояния. Конфигурации $1s\ n\ell$

1s2s
$$n_1 = 1$$
 $n_2 = 2$ $\ell_1 = \ell_2 = 0$

$$\ell_1 = \ell_2 = 0$$

Пространственные функции

$$\psi_{S}(\vec{r}_{1},\vec{r}_{2}) = \frac{1}{\sqrt{2}} (\psi_{1s}(\vec{r}_{1})\psi_{2s}(\vec{r}_{2}) + \psi_{1s}(\vec{r}_{2})\psi_{2s}(\vec{r}_{1}))$$
 синглет

$$\psi_A(\vec{r}_1, \vec{r}_2) = \frac{1}{\sqrt{2}} (\psi_{1s}(\vec{r}_1)\psi_{2s}(\vec{r}_2) - \psi_{1s}(\vec{r}_2)\psi_{2s}(\vec{r}_1))$$
 триплет

Это волновые функции термов 1S и 3S

Мы не учитываем энергию электростатического взаимодействия электронов. Энергии термов одинаковы.

Ho! В триплетном состоянии электроны дальше друг от друга (эффект «симметрийного» отталкивания)

Основное состояние атома гелия

Конфигурация $1s^2$

$$n_1 = n_2 = 1$$
 $\ell_1 = \ell_2 = 0$

Возможна только симметричная относительно перестановки пространственная функция

$$\psi(\vec{r}_1,\vec{r}_2) = \psi_{1s}(\vec{r}_1)\psi_{1s}(\vec{r}_2)$$
 - спиновая антисимметрична (синглет)

$$\chi_A(\sigma_1,\sigma_2) = \frac{1}{\sqrt{2}} \Big(\uparrow \downarrow \Big) - \Big| \downarrow \uparrow \Big\rangle \Big), \quad S = 0, \quad M_S = 0,$$

Поправка к энергии (электростатическое взаимодействие электронов)

$$\Delta E = \int \psi^*(\vec{r}_1, \vec{r}_2) V_{12}(\vec{r}_1, \vec{r}_2) \psi(\vec{r}_1, \vec{r}_2) d^3 r_1 d^3 r_2 \qquad \Delta E = \int |\psi_{1s}(\vec{r}_1)|^2 |\psi_{1s}(\vec{r}_2)|^2 \frac{e^2}{|\vec{r}_1 - \vec{r}_2|} d^3 r_1 d^3 r_2$$

$$\rho(\vec{r}) = e |\psi_{1s}(\vec{r})|^2 \qquad \psi_{1s}(\vec{r}) = \sqrt{\frac{Z^3}{\pi a_0^3}} \exp(-Zr/a_0)$$

$$\Delta E = \frac{5}{4} ZRy. \qquad E = -(2Z^2 - \frac{5}{4}Z)Ry$$

Гелий (
$$Z=2$$
) $E=-5.5Ry \approx 74.8~ 9B$ $I=1.5Ry \approx 20.4~ 9B$ $I_{\rm exp} \approx 24.6~ 9B$

$$\rho(\vec{r}) = e \left| \psi_{1s}(\vec{r}) \right|^2 \qquad \psi_{1s}(\vec{r}) = \sqrt{\frac{Z^3}{\pi a_0^3}} \exp \left(-Zr/a_0 \right) \qquad \left(\Delta E = \int \frac{\rho(\vec{r}_1)\rho(\vec{r}_2)}{\left|\vec{r}_1 - \vec{r}_2\right|} d^3r_1 d^3r_2 \right)$$
 взаимодействия двух распределенных зарядов

Отрицательный ион водорода H^-

Возбужденные состояния атома гелия Расщепление конфигурации на термы

 $1sn\ell$

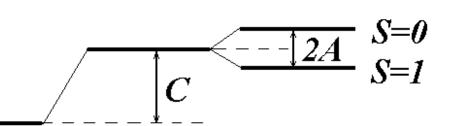
$$\Delta E_{S(A)} = \int \left| \psi_{S(A)}(\vec{r}_1, \vec{r}_2) \right|^2 \frac{e^2}{r_{12}} d^3 r_1 d^3 r_2 = \frac{1}{2} \int \left| \left(\psi_{1s}(\vec{r}_1) \psi_{n\ell}(\vec{r}_2) \pm \psi_{1s}(\vec{r}_2) \psi_{n\ell}(\vec{r}_1) \right) \right|^2 \frac{e^2}{r_{12}} d^3 r_1 d^3 r_2 = C \pm A$$

$$C = \int |\psi_{1s}(\vec{r}_1)|^2 |\psi_{n\ell}(\vec{r}_2)|^2 \frac{e^2}{|\vec{r}_1 - \vec{r}_2|} d^3 r_1 d^3 r_2$$

- кулоновский интеграл

$$A = \int \psi_{1s}(\vec{r}_1) \psi_{n\ell}(\vec{r}_2) \psi_{1s}^*(\vec{r}_2) \psi_{n\ell}^*(\vec{r}_1) \frac{e^2}{|\vec{r}_1 - \vec{r}_2|} d^3 r_1 d^3 r_2$$

- обменный интеграл ("симметрийная" часть энергии кулоновского взаимодействия)

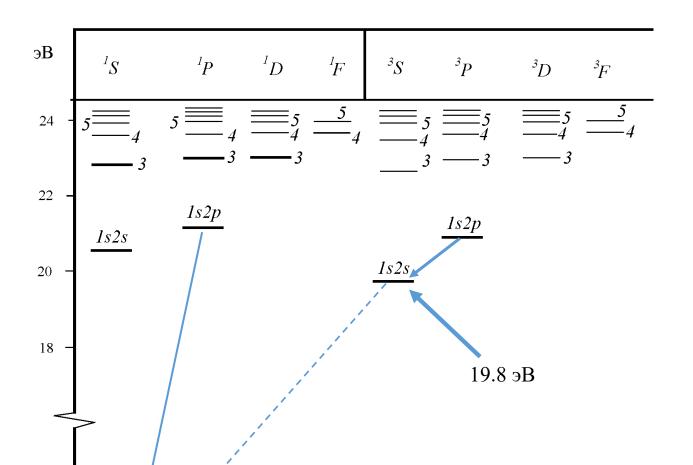


В триплетном состоянии электроны дальше друг от друга («отталкивание» слабее) \Longrightarrow энергия взаимодействия электронов меньше \Longrightarrow триплетный терм ниже по энергии

Конфигурация расщепилась на термы 1L и 3L . Например, $1s2p
ightarrow \ ^1P$, 3P

Спектр атома гелия

Одноэлектронные возбуждения



Дважды возбужденные состояния и автоионизация

$$He(2s^2) \rightarrow He^+(1s) + e$$

Гелиеподобные атомы Системы синглетов и триплетов

$$Be \quad 1s^2 2s^2$$

$$Mg \quad 1s^2 2s^2 2p^6 3s^2$$

$$Hg \quad6s^2$$

Запрещенные переходы и метастабильные состояния запрет интеркомбинаций

Конфигурация, терм, состояние

Электронная конфигурация — распределение по оболочкам и подоболочкам $n\ell^k$

Суммарный орбитальный момент двух электронов $\hat{L}^2 = \left(\hat{\vec{\ell}}_1 + \hat{\vec{\ell}}_2\right)^2$ Можно показать, что с учетом электростатического взаимодействия электронов

$$\left[\hat{H},\hat{L}^2\right]=0$$

Также очевидно, что $\left[\hat{H},\hat{S}^{2}\right]=0$, где $\hat{S}^{2}=\left(\hat{\vec{s}}_{1}+\hat{\vec{s}}_{2}\right)^{2}$ - оператор квадрата полного спина

Следовательно, в заданной конфигурации можно построить набор состояний с заданными полным орбитальным и спиновым моментом - атомные термы

Обозначение ^{2S+1}L : например, $1s3d \ (^{1}D, ^{3}D)$

Есть еще спин-орбитальное взаимодействие

Считаем, что $V_{LS} \ll V_{ee}$ (верно для нетяжелых атомов): терм расщепляется на состояния (тонкая структура терма)

Обозначение ${}^{2S+1}L_{J}$: например, 1s3d (${}^{1}D_{??}$, ${}^{3}D_{??}$)

Число состояний в терме — число возможных значений квантового числа J. Это $\min(2S+1,2L+1)$

Иерархия взаимодействий в многоэлектронном атоме

Взаимодействие с ядром – межэлектронное взаимодействие – спин-орбитальное взаимодействие

конфигурация

терм

состояние

$$V_{LS} \ll V_{ee}$$

$$LS$$
 - связь

$$\vec{L} = \vec{\ell}_1 + \vec{\ell}_2 \quad \vec{S} = \vec{s}_1 + \vec{s}_2$$

$$\vec{J} = \vec{L} + \vec{S}$$

Взаимодействие с ядром – спин-орбитальное взаимодействие - межэлектронное взаимодействие

конфигурация

терм

состояние

$$V_{\ell s} > V_{ee}$$

$$\vec{j_i} = \vec{\ell}_i + \vec{s}_i$$

$$\vec{J} = \sum \vec{J}_i$$

jj - связь реализуется в тяжелых многозарядных ионах, атомных ядрах

Существуют и другие типы связей...